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1 Introduction

Supersymmetric D-brane systems with a large degeneracy of ground states have been a cen-

tral element in progress in string theory as a quantum theory of gravity. One of the theory’s

great successes is the discovery that counting such states at weak coupling reproduces the

black hole entropy [1, 2]. The AdS/CFT correspondence discovered by considering a near-

horizon limit of the brane systems [3] then led to a significantly better understanding of

the relation between geometry and D-brane descriptions. Further understanding of this

relation has come from the construction of smooth horizon-free geometries corresponding

to individual states of the D-brane system, showing that the map between geometry and

field theory can go beyond the thermodynamic regime [4–7]. Though a generic microstate

is expected to admit a description only in the full string theory (as found recently in [8]),

large classes of geometries dual to supersymmetric microstates of a three-charge brane

system in five dimensions and a four-charge brane system in four dimensions have been

constructed. Mathur and his collaborators, in a series of papers, have argued that the

information paradox could be resolved if the black hole geometry is viewed as a coarse

grained description, averaging over geometries describing the individual microstates which

differ in a ‘fuzz ball’ region inside the would-be horizon of the black hole. See [9, 10] for

reviews of this work.

To test this proposed description of black holes and to further improve our understand-

ing of the relation between geometry and D-branes, it is useful to construct smooth geome-

tries dual to the non-supersymmetric excited states of the D-brane systems. This allows us

to consider dynamical issues involving transitions between different states. Very few such

geometries have been constructed. Geometries dual to two- and three-charge brane systems

which are asymptotically flat in five dimensions were constructed in [11], and geometries

dual to three-charge brane systems which are asymptotically flat in four dimensions were

constructed in [12, 13]. These geometries are smooth in the duality frame where the brane
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charges correspond to a D1-D5-P system compactified on T 5 in the five-dimensional case,

and to a D1-D5-Kaluza-Klein monopole (KKM) system in the four-dimensional case. Al-

though smooth geometries have been constructed only for very special non-supersymmetric

states, this has already led to interesting physics; these geometries are unstable [14], and

this instability can be precisely reproduced by studying the dynamics of the corresponding

quantum state of the brane system [15].

A next step in the construction of smooth non-supersymmetric geometries would be to

obtain smooth solutions which are asymptotically flat in four dimensions corresponding to

a four-charge D1-D5-P-KKM system. This extension was not undertaken in [13] because

the additional charge seemed to lead to daunting additional complexities. The aim of this

paper is to show that the solution with D1-D5-P-KKM charges is in fact related to the

D1-D5-KKM solution obtained in [13] by a coordinate transformation, using the analogue

of the transformation studied in [16] in the supersymmetric case.

This coordinate transformation is related to spectral flow, which has played an im-

portant part in the understanding of these smooth geometries from the outset. When the

first simple examples of smooth geometries were constructed in [4], they were related to

states obtained by spectral flow from the Neveu-Schwarz ground state in the dual CFT, and

this spectral flow was identified with a coordinate transformation of the near-core AdS3

region in the spacetime geometry. This coordinate transformation was then exploited in

the construction of further examples of solutions which were asymptotically flat in five

dimensions [17]. The near-core regions of these solutions were related by a coordinate

transformation, but the full asymptotically flat solutions were physically distinct. The

remarkable realisation of [16] is that once we compactify a further direction on a circle

by adding a Kaluza-Klein monopole charge to obtain solutions which are asymptotically

flat in four dimensions, the spectral flow transformation which preserves supersymmetry is

realised as a coordinate transformation for the full asymptotically flat solution.

The solutions considered in [16] can be written in terms of six-dimensional metrics

obtained by a trivial Kaluza-Klein reduction from ten dimensions on a T 4, and describe

a geometry sourced by a string-like extended object in the six-dimensional theory. The

solutions that are considered are supersymmetric solutions which are asymptotically flat in

four dimensions. There are therefore two directions in the six-dimensional solution which

have finite size at large distances. In [16], it was shown that a coordinate transformation

which mixes up these two Kaluza-Klein circles can be interpreted as spectral flow from the

point of view of the dual CFT description of the string sourcing the geometry. From the

point of view of the CFT description, this coordinate transformation mixes charges which

would be interpreted as R-charges with the Virasoro generators L0, L̄0, so it is naturally

interpreted as a spectral flow automorphism of the CFT.1

A particular example considered in [16] is to use this spectral flow to map a two-charge

supertube to a bubbling three-charge geometry. Since the general two-charge supertube

1 Although the transformation is purely a coordinate transformation in the six-dimensional description, it

will modify the asymptotic moduli of the solution. Thus, with boundary conditions that fix the asymptotic

metric, this coordinate transformation is a global symmetry of the theory, rather than a gauge symmetry,

and we can think of the solutions it relates as physically distinct.
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solution has an arbitrary profile for the tube, this can be used to construct new infinite

families of three-charge solutions. Our interest in the non-supersymmetric case is in the

analogue of the simplest case, when we consider a round supertube and the corresponding

three-charge solution.

In this paper, we will consider the analogue of the coordinate transformation used

in [16] for the non-supersymmetric geometries considered in [13]. For non-supersymmetric

geometries, we can consider acting with spectral flow independently on the left and on the

right; these transformations are related to two independent coordinate transformations in

the near-core AdS3 region. However, we find that as in the supersymmetric case, only a

single combination extends to a coordinate transformation of the full asymptotically flat

solution. The coordinate transformation is labelled by a single integer parameter. This

coordinate transformation adds an additional momentum charge to the solutions, and we

show that it reproduces precisely the expected D1-D5-P-KKM solutions, corresponding to

the three-charge D1-D5-P solutions of [11] sitting at the core of a Kaluza-Klein monopole.

In section 2, we give a brief review of the non-supersymmetric geometries of [13].

Section 3 contains the main result of our paper, showing that a spectral flow coordinate

transformation can be used to obtain the expected D1-D5-P-KKM solution.

2 The non-supersymmetric microstates of the D1-D5-KK system

We will now briefly review the structure of the smooth non-supersymmetric solutions carry-

ing D1- D5- and Kaluza-Klein (KK) monopole charges constructed in [13], which we want

to apply this transformation to. These solutions are asymptotically flat in four dimensions,

and there is a family of smooth solutions labelled by a single integer parameter. The metric

for the smooth solutions is

ds210 =
(

H̃1H̃5

)−1/2 [

A (dy + s1s5B)2 −G (dt+ c1c5A)2
]

+
(

H̃1H̃5

)1/2
[

f2

AG

(

dz + ω1
)2

+
dρ2

∆
+ dθ2 +

∆

f2
sin2 θdφ2

]

+

(

H̃1

H̃5

)

ds2T 4 (2.1)

where

A = ω0 − C

G

(

dz + ω1
)

, (2.2)

B = −V0

(

dz + ω1
)

+ κ1
0, (2.3)

H̃1,5 = A+ (A−G) s21,5, (2.4)

G = A (1 −H) =
Af2 − C2

B
. (2.5)
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The metric functions are

∆ = ρ2 − ρ2
0, (2.6)

f2 =
(

ρ2 − ρ2
0

)

+ ρ2
0n

2 sin2 θ, (2.7)

A = f2 + 2p
[

(ρ− ρ0) + n2ρ0 (1 + cos θ)
]

, (2.8)

B = f2 + 2
ρ0 (p+ ρ0)

(

n2 − 1
)

(p− ρ0 (n2 − 1))

[

(ρ− ρ0) + n2ρ0 (1 − cos θ)
]

, (2.9)

C =
2ρ0

√

ρ0 (ρ0 + p)

n

(

n2 − 1
) (

p− ρ0

(

n2 − 1
))

[(ρ− ρ0) + (ρ0 + p) (1 − cos θ)] , (2.10)

ω0 =
2J sin2 θ (ρ− ρ0)

f2
dφ, (2.11)

ω1 =
2

f2

√

p (p−ρ0 (n2−1))

[

(ρ2−ρ2
0) cos θ− ρ0pn

2

(p−ρ0(n2−1))
(ρ−ρ0) sin2 θ−n2ρ2

0 sin2 θ

]

dφ,

(2.12)

and

V0 = −
n
(

n2 − 1
)

A

√

ρ3
0 (p+ ρ0)

p (p− ρ0 (n2 − 1))3
[

f2 + 2p (ρ+ p+ (p+ ρ0) cos θ)
]

, (2.13)

κ1
0 =

2n
√

ρ0(p+ ρ0)

(p − ρ0(n2 − 1))

sin2 θ

f2

(

ρ0(n2−1)
(p−ρ0(n2−1))

(

p2 + 2pρ0 − ρ2
0

(

n2 − 1
))

(ρ− ρ0)

+2ρ2
0(n

2 − 1) (ρ0 + p)

)

, (2.14)

κ0
0 = − 2

f2

ρ0 (p+ ρ0)
(

n2 − 1
)

(p− ρ0 (n2 − 1))

[

(

ρ2 − ρ2
0

)

cos θ +
(

pρ− ρ2
0

(

n2 − 1
))

sin2 θ
]

, (2.15)

where

J2 =
ρ3
0p (ρ0 + p)n2

(

n2 − 1
)2

(p− ρ0 (n2 − 1))
. (2.16)

The determinant of the metric is

g = −H̃
3
1

H̃5

sin2 θ. (2.17)

It is convenient to introduce the combinations

P 2 =
p
(

p2 +m2
)

(p+ q)
, Q2 =

q
(

q2 +m2
)

(q + p)
, (2.18)

where

q =
ρ0(p+ ρ0)(n

2 − 1)

(p− ρ0(n2 − 1))
. (2.19)

The charges of the four-dimensional asymptotically flat solution are then

M =
1

2

[

p+ q
(

1 + s21 + s25
)]

P = P, Q = Qc1c5,

J = Jc1c5, Qi = qsici, i = 1, 5, (2.20)
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where P,Q,Q1 and Q5 are the KK monopole, KK electric, D1 and D5 charges.

The metric has coordinate singularities at ρ = ρ0 and θ = 0, π. The determinant of

the metric at constant ρ and t is

g(ρt) =
H̃2

1

H̃2
5f

2
(ρ− ρ0) sin2 θ

[

A(ρ+ ρ0)

(

Bc21c
2
5 − f2(c21s

2
5 + s21c

2
5) +

Gf2

A
s21s

2
5

)

− 2Jc21c
5
5

]

,

(2.21)

so at these singularities, a spatial isometry direction is degenerating. To make these singu-

larities smooth origins, we need to make appropriate identifications so that the direction

which is degenerating is compact with an appropriate period. This imposes the identifica-

tions

(y, z, φ) ∼ (y, z − 4πP, φ + 2π) ∼ (y, z + 4πP, φ + 2π) ∼ (y − 2πnRy, z + 4πnP, φ + 2πn),

(2.22)

where

Ry = 4q

√
q
√
p+ q

√

q2 +m2
s1s5. (2.23)

The first two identifications in (2.22) guarantee smoothness at θ = 0, π, and the last guar-

antees smoothness at ρ = ρ0.

To facilitate the comparison to the supersymmetric case, we introduce “light-cone

coordinates” u, v defined by

t =
1√
2

(u+ v) , y =
1√
2

(u− v) , (2.24)

In these coordinates,

ds210 =
(

H̃1H̃5

)−1/2
(

A−G

2

)

[

(du+ β)2 + (dv + ω)2
]

−
(

H̃1H̃5

)−1/2
(A+G) (dv + ω) (du+ β)

+
(

H̃1H̃5

)1/2
[

f2

AG

(

dz + ω1
)2

+
dρ2

∆
+ dθ2 +

∆

f2
sin2 θdφ2

]

+

(

H̃1

H̃5

)

ds2T 4, (2.25)

where we define

ζ1 = s1s5B =
1√
2

(β − ω) , ζ2 = c1c5A =
1√
2

(β + ω) , (2.26)

and β and ω are given by

β =
1√
2

(ζ1 + ζ2) = −η1

(

dz + ω1
)

+ η2, (2.27)

ω =
1√
2

(ζ2 − ζ1) = η3

(

dz + ω1
)

+ η4, (2.28)

(2.29)

– 5 –
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where

η1 =
1√
2

(

s1s5V0 + c1c5
C

G

)

, (2.30)

η2 =
1√
2

(

c1c5ω
0 + s1s5κ

1
0

)

, (2.31)

η3 =
1√
2

(

s1s5V0 − c1c5
C

G

)

, (2.32)

η4 =
1√
2

(

c1c5ω
0 − s1s5κ

1
0

)

. (2.33)

2.1 BPS case

The solution is supersymmetric for n = 1, where m = 0 and we must take the δi → ∞
to hold the charges Qi fixed. This case therefore requires a slightly separate discussion.

When n = 1, C = 0 and B = f2 = ρ2 − ρ2
0 cos2 θ , so G = A, but

(

1 − G

A

)

sinh2 δi =
2Qi

ρ+ ρ0 cos θ
, (2.34)

so H̃i = A
(

1 + 2Qi

ρ+ρ0 cos θ

)

. Similarly, the one-forms ω and β in (2.25) will have finite limits.

We also have
A

f2
= 1 +

2p

ρ− ρ0 cos θ
. (2.35)

It is then useful to introduce the new coordinates

r̃ = ρ− ρ0 cos θ, cos θ̃ =
ρ cos θ − ρ0

ρ− ρ0 cos θ
(2.36)

and define the parameters

c = 2b, QK = 2P, QKe = 2Q, Qi = 2Qi, i = 1, 5. (2.37)

We then have

V =
A

f2
= 1 +

QK

r̃
, Zi =

H̃i

A
= 1 +

Qi

r̃c
, i = 1, 5 (2.38)

where

r̃c =

√

r̃2c + c2 + 2cr̃ cos θ̃. (2.39)

The metric (2.25) in the supersymmetric case n = 1 then takes the form

ds210 = − 2

H
(dv + ω) (du+ β) +HV −1

(

dz + ω1
)

+HV
(

dr̃2 + r̃2dθ̃2 + r̃2 sin2 θ̃2dφ2
)

+

(

Z1

Z5

)

ds2T 4, (2.40)

where H =
√
Z1Z5, reproducing the form used for example in [16]. Note however that the

coordinates here are not exactly the same as in [16]; in particular, by (2.22), in (2.40) the

z coordinate has period 4πQK , and the v coordinate has period 2πnRy.

– 6 –
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2.2 Near-core limit

The solution reviewed above is supposed to be interpreted as the familiar smooth D1-D5

solution of [11] which is asymptotically flat in five dimensions, sitting at the core of a

Kaluza-Klein monopole which converts it into a solution which is asymptotically flat in

four dimensions. In [13], this was argued by showing that the metric (2.1) has a near-core

limit where it reduces to an AdS3 × S3 geometry of the same form as is obtained in the

near-core limit of the five-dimensional solution of [11]. We will now briefly review this

near-core limit.

The appropriate limit is to take ρ0 → 0 holding p and the D1, D5 brane charges Qi

fixed. This limit will scale Q and J to zero, so it is distinct from the supersymmetric limit.

As we take this limit, we scale the coordinates so as to zoom in on a core region in the

geometry, scaling ρ like ρ0, and the identification on the y coordinate scales like 1/
√
ρ0.

We therefore define new coordinates by

ρ = ρ0(1 + 2R2), y =
ℓ2ϕ

4
√
pρ0

, t =
τ

4
√
pρ0

, z = pψ, (2.41)

and take the limit keeping R,ϕ, τ finite. In this limit the metric (2.1) becomes AdS3 × S3

geometry at least locally. To write the sphere in standard coordinates, we additionally

define the new coordinates

θ = 2θ̄, ψ̄ =
1

4
(2φ + ψ), φ̄ =

1

4
(2φ − ψ). (2.42)

The metric is then

ds2 ≈ −R
2 + 1

ℓ2
dτ2 +

ℓ2dR2

R2 + 1
+ ℓ2R2dϕ2 (2.43)

+ℓ2
(

dθ̄2 + cos2 θ̄(dψ̄ + ndϕ)2 + sin2 θ̄

(

dφ̄− n

ℓ2
dτ

)2)

+

√

Q1

Q5
ds2T 4.

In the near-core limit,

nRy = 4

√

p

ρ0

√

Q1Q5, (2.44)

so the identifications (2.22) become in these coordinates simply ψ̄ ∼ ψ̄ + 2π, φ̄ ∼ φ̄ + 2π,

and (ϕ, ψ̄) ∼ (ϕ− 2π, ψ̄+2πn). If these are the fundamental identifications, the spacetime

is then globally AdS3 × S3.

3 Spectral flow

Let us now consider the construction of new solutions by acting on the non-supersymmetric

geometry (2.1) with a spectral flow coordinate transformation. As in [16], we consider the

coordinate transformation

z → z + γv, (3.1)

where γ is a parameter, and we define the spectral flow using the coordinates of (2.25). It is

then clear that the spectral flow we consider here will coincide with the one studied in [16] in

– 7 –
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the supersymmetric case n = 1, where it corresponds to the simple example we mentioned

in the introduction, relating the round two-charge supertube in the Kaluza-Klein monopole

background to a three-charge bubbling solution in the same monopole background.

In general, acting on the non-supersymmetric metric (2.25) with the spectral flow (3.1),

we will obtain a new solution

ds26 = − 2

H̃
(dv + ω̃)

[

du+ β̃ +
F̃

2
(dv + ω̃)

]

+ H̃Ṽ −1
(

dz + ω̃1
)

+H̃Ṽ
[

dr̃2 + r̃2dθ̃2 + r̃2 sin2 θ̃dφ2
]

, (3.2)

where

ω̃ = (1 + γη3)
−1 ω, H̃ = (1 + γη3)

−1H, Ṽ = (1 + γη3)V, (3.3)

ω̃1 = ω1 − γη4, F̃ = −2γη1 −
γ2H2V −1

(1 + γη3)
, (3.4)

β̃ = β +
γη1

(1 + γη3)
ω +

γ2H2V −1

(1 + γη3)
2ω − γH2V −1

(1 + γη3)

(

dz + ω1
)

. (3.5)

As in the supersymmetric case, this new solution has an additional charge given by the

Kaluza-Klein gauge potential F̃ , corresponding to a momentum (Kaluza-Klein electric)

charge along the circle that the D1 and D5 branes wrap. Note that this is not the same as

the Kaluza-Klein electric charge which is already present in the solution (2.25), which is

associated with the Kaluza-Klein gauge field coming from the z circle. We therefore refer

to the resulting solution as a four-charge D1-D5-P-KKM solution.

In general, this solution will not have the same asymptotics as the solution that we

started with. As in the supersymmetric case, we need to quantise γ to ensure that the

spectral flow transformation preserves the identifications (2.22). Starting from the identi-

fications (2.22) in the original coordinates and applying the transformation z → z + γv,

the identifications in the new coordinates are

(y, z, φ)∼(y, z−4πP, φ+2π)∼(y, z+4πP, φ+2π)∼(y−2πnRy , z+4πnP−2πnRyγ, φ+2πn).

(3.6)

we want these to be the same as the identifications (2.22) for the new coordinates. This

will be true if z ∼ z − 2πnRyγ. Since (3.6) implies z ∼ z + 8πP, this requires

γ =
4mP
nRy

(3.7)

for some integer m. This is the analogue for our case of the restriction of γ to even integers

in the supersymmetric case, and taking into account the difference in our normalization of

z, v, it will reduce to that identification in the supersymmetric case.

Spectral flow then gives us a solution labelled by the D1 and D5 brane and Kaluza-

Klein monopole charges, the size of the y circle Ry, and two integer parameters m,n.2

2We can think equivalently think of these solutions as labelled by the D1, D5, P charges, the Kaluza-Klein

monopole charge and the two integer parameters m, n.

– 8 –
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This is exactly the number of solutions we would expect if we were to put the three-charge

D1-D5-P smooth solutions of [11] at the core of a Kaluza-Klein monopole. We will relate

the solution here to the solution of [11] by considering the near-core limit, as was done for

the solution without the momentum charge in [13].

Since the near-core limit has already been worked out in the original coordinates before

we perform the spectral flow in [13], as reviewed in section 2.2, all we need to do is to

consider the action of the spectral flow transformation in this near-core region. Using the

coordinate transformations (2.41), (2.42), the spectral flow transformation (3.1) becomes,

in this near-core region,

ψ̄ → ψ̄ +
γ

16p
√
pρ0

(

τ − ℓ2ϕ
)

, φ̄→ φ̄− γ

16p
√
pρ0

(

τ − ℓ2ϕ
)

. (3.8)

In the near-core region, Ry is given by (2.44), so the quantization condition (3.7) becomes

γ = m
√
pρ0

1√
Q1Q5

, (3.9)

and ℓ2 = 16p
√
Q1Q5, so the spectral flow transformation in the near-core region is

ψ̄ → ψ̄ +
m

ℓ2
(

τ − ℓ2ϕ
)

, φ̄→ φ̄− m

ℓ2
(

τ − ℓ2ϕ
)

. (3.10)

This shows that the near-core limit of the spectral flow coordinate transformation (3.1)

agrees with the usual notion of spectral flow for AdS3 × S3 spacetimes, and the near-core

metric of the new solution obtained by acting with this spectral flow transformation will be

ds2 ≈ −
(

1 +R2
)

ℓ2
dτ2 + ℓ2R2dϕ2 +

ℓ2dR2

R2 + 1
+ ℓ2dθ̄2

+ℓ2 cos2 θ̄
(

dψ̄ +
m

ℓ2
dτ − (m− n) dϕ

)2
+ ℓ2 sin2 θ̄

(

dφ̄− 1

ℓ2
(m+ n) dτ +mdϕ

)2

+

√

Q1

Q5
ds2T 4 . (3.11)

This agrees with the near-core region of the three-charge solution in [11], up to a relabelling

of the integer parameters and a trivial shift of ψ̄, φ̄ by terms proportional to τ . Thus, these

four-charge D1-D5-P-KKM solutions obtained by (3.1) can indeed be identified with the

three-charge solution of [11] sitting at the core of a Kaluza-Klein monopole.

Thus, we have shown that the spectral flow coordinate transformation (3.1) can be

used to construct the remaining simple example of a non-supersymmetric solution, the

D1-D5-P-KKM solution. We could also consider orbifolds of the solution as in [11].

4 Conclusions

We have shown that spectral flow can be realised as a coordinate transformation for non-

supersymmetric solutions which are asymptotically flat in four dimensions, generalising the

observation of [16] in the supersymmetric case. We have focused on the spectral flow of the

known smooth solutions, obtained in [13], thus completing the catalogue of “simple” smooth
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solutions, corresponding to geometries with two centers in the four-dimensional metric. The

explicit construction of these metrics will be useful for future studies of the map between

these smooth solutions and CFT microstates. Unlike in the supersymmetric case, when we

consider solutions which involve an orbifold of the S3 in the near-horizon region, the map

onto CFT states is not understood even for these simple two-center solutions [11].

The same arguments could however be applied to any new non-supersymmetric solu-

tions that are constructed. This simplifies the construction of further non-supersymmetric

solutions by removing the requirement to consider the additional Kaluza-Klein momentum

charge which can be added by spectral flow. This is an important simplification; the ex-

tension of the direct analysis of [13] to the case with Kaluza-Klein momentum charge is

extremely laborious. However, the problem of constructing further non-supersymmetric

solutions is extremely challenging, even in the simpler setting with just D1, D5 and KK

monopole charges, and this remains one of the most important open problems for this area.

Further progress on these solutions will require the development of new techniques.
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